Unité Systèmes Sol - Eau Département des Sciences et Technologies de l'Environnement Gembloux Agro-Bio Tech – Université de Liège

Mapping overland flow hazard in order to enhance citizens' awareness of head catchment hydrology

Ir. Nathalie Pineux Ir François Colard Dr. Aurore Degré

Turin, November 15th 2012

European context

- Between 1998 and 2004, Europe suffered from more than hundred major inundations,
 - o 700 deaths,
 - the moving of about half a million of people
 - o at least 25 billions Euros of economic losses covered by the insurance policies.

• → 2007/60/CE directive

- This directive aims at a better evaluation of the risks and a better coordination of prevention, protection and crisis management.

Belgian context

- The damages caused by muddy floods are higher than those caused by flooding of rivers.
 - The cleaning operations for a village after a storm can lead to an estimated cost of 11 000 €.
 - Loss of arable land.
 - physical and chemical alteration of rivers
 - psychological stress for people.

Frequency of muddy floods over a 10-year period in all municipalities of the study area; data for Wallonia (1991–2000) taken from Bielders et al. (2003), data for Flanders (1995–2004) derived from a questionnaire sent to all municipalities in 2005.

O. Evrard, C. Bielders, K. Vandaele, B. van Wesemael, Spatial and temporal variation of muddy floods in central Belgium, off-site impacts and potential control measures, CATENA, Volume 70, Issue 3, 1 August 2007, Pages 443-454, ISSN 0341-8162, 10.1016/j.catena.2006.11.011.

Troubling facts...

- The citizen's awareness is not sufficient
- To date, there is no building regulation in runoff inundation zones

Objectives of the study

- In 2011 in Wallonia, political decision : "overland flows and mudflows will be included in the flood hazard map".
- Technical specifications
 - All the citizens "at the same level" → use of data <u>available on the whole</u> region (17000 km²)
 - Maximal use of <u>existing data</u>
 - <u>Minimising the zones</u> affected by regulations
 - Regulations must lead to adapt the building project and not to forbid it
 - The land management plan fix the parcels' prices but doesn't take into account the natural risks. Therefore, a new hazard map is a loss of value for owners

Mapping overland flow hasard

 Some methods were developped accross Europe, we tested their application in Wallonia

Example of a small catchment highly impacted in spring 2011

Example 1/3

•	Technic derived	from	a	study	in	the	Arno
	river catchment						

- Includes
 - Concentration time
 - o return period of a given intense rainfall
- → the whole subcatchment is set « at risk »

Houses flooded by runoff and mudflow

A N

Example 2/3

- Noduwez La Pose Coffar Coffar
- Use of the colluvial soils (belgian soil map)
- Includes
 - Zones where colluvial and alluvial soils were identified
- → Data not available in urbanised zones

Houses flooded by runoff and mudflow

Example 3/3

- Accumulation flow
- Includes
 - o DEM
- No difference between soils, land use, concentration time....

Orp-le-Grane

duwe

Method proposed

- Available data
 - Spatially distributed rainfall statistics
 - DTM (1/10'000)
 - Soil map (1/20'000)
 - Landuse map (1/10'000)
- lacking data
 - Small hydraulic infrastructures

Method proposed

- Pragmatic analysis
 - Automatic extraction of dry watersheds
 - the outlets are considered as the points where runoff inters the permanent river network
 - Rainfall : T 25, 50 and 100 years (statistics available for each city), duration 1 h
 - Land use -> following landuse map except in agricultural zones where soil are considered as <u>bare</u>.
 - CN calculation of runoff production
 - Unit hydrograph transfer to outlet
 - Extraction of peak flow value

Method proposed

 Peak flow value is then distributed in the watershed proportionnaly to the flow accumulation of each pixel (10X10m resolution)

Qpp=(Qp*Sp)/(Sbv)

Qpp : peak value of a pixel Qp : peak value at the outlet Sbv : watershed area Sp : flow accumulation of the pixel

• Then, the discharge values are classified = political decision

Combination with existing flooding map

Use of the map

- New building permit
 - Within 20 meters of a runoff axis, applicant will have to require an advice from the land management administration
 - He/She will have to check the project and, if necessary, recommand measures to limit the vulnerability of the new building.

• Existing building

- In case of flooding, technical advisers will propose mitigation measures in the watershed as well as at the building's level
- o (specialised team of 4 people started in 2011) www.giser.be

Advantages and drawbacks

- The runoff and muddy floods hazards are mapped
- New buildings projects will have to take that into account
- Location on the runoff axis is based on a 10*10m DTM
 Small hydraulics are not known at the regional scale
 Existing houses remain unprotected
 - This is only a first attempt to deal with this particular phenomenon
 - An human analysis remains essential but only on limited zones identified to be at risk

Thank you

Founded by SPW

Nathalie Pineux and Aurore Degré Soil – Water systems Ulg - Gembloux Agro-Bio Tech Aurore.degre@ulg.ac.be_http://www.gembloux.ulg.ac.be/ha

Publications and reports <u>http://www.orbi.ulg.ac.be</u>