Letters in applied hydrology

M ↔ m **p**² PC P O & R r _? 🔊 🕸 🗰 🚦 s 🗝 🕰 S **→ + ∫ ⊽т**т UHU 🖴 V 7 Y

Duncan W Reed

Health warning!

The book is full of puns (jeux de mots)

It all depends what year mean median

It all depends

- Correlation is an association between variables.
- **"Dependence**" has a less rigid meaning: helpful when thinking more widely about relationships.
- Inter-site dependence is the tendency for behaviour at one site to be linked to behaviour at another.
- I want to show you that studying dependence in extremes can be interesting & relevant!

Some problems that involve dependence

1. Effectiveness of the conjunctive use of water resources

Integrated water management

<u>http://www.ciwem.org/policy-and-international/current-</u> topics/water-management/integrated-water-management.aspx

- "Water transfer between river basins can ... result in ecological stress and change. However different river systems can have different hydrological regimes."
- "The Thames is largely groundwater-driven whereas the larger and less developed Severn obtains most of its runoff from the mountains of Wales."
- "The risk of a drought occurring in both at the same time is low."

Some problems that involve dependence

- 1. Effectiveness of the conjunctive use of water resources
- 2. Clustering of events in time, especially spatially extensive extreme events

Temporal dependence in extremes

Date	Country	Insured loss, USDm, at 2011 prices	
http://media.s	swissre.com/documer	nts/Flood.pdf	Top 10
July-Nov 2011	Thailand	12000	insured
Aug 2002	Germany &		fresh-
	Czech Republic	2900	
Jun 2007	United Kingdom	2700	water
Aug 2005	Switzerland	2400	floods in
Jan 2011	Australia	2 300	history
Jul-Aug 1997	Poland &		nistory
	Czech Republic	2 200	
Jul 2007	United Kingdom	2000	
Dec 2010	Australia	2 100	
Apr 1993	United States	1 900	
Jun-Aug 1993	United States	1 600	

Some problems that involve dependence

- 1. Effectiveness of the conjunctive use of water resources
- 2. Clustering of events in time, especially spatially extensive extreme events
- 3. Understanding the **structure** of dependence in floods within/between river basins

Topic d = dependence

http://www.ceh.ac.uk/data/nrfa/data/spatialdata.html?27009

Spatial structure of dependence in Yorkshire Ouse

Annual maximum (AM) analysis

- The AM series is natural and convenient. It has a frequency statement built-in. There is exactly one annual maximum per year!
- But why do we analyse AM series rather than **2-year** or **5-year** maxima?
- Because we are taught to "use all the data" and do not want to omit an important 2nd ranking event.
- The penalty is that we sometimes include non-events.

Flood frequency analysis, Coln at Bibury

Topic T = tweak

Topic T = tweak

AM rainfalls in an arid zone

Rainfall frequency analysis (AM series)

PM rainfalls in an arid zone

AM 1-day rainfalls with Pentad Maxima highlighted

AM analysis v PM analysis

Inter-site dependence in extremes

- The estimation of rare extremes often calls for pooling data from catchments judged similar to the subject cat^t.
- There is dependence in AM values across the network.
- If the network is dense, the dependence will be strong. More typically, the network is sparse and dependence is mild.
- A degree of dependence is good news! Were there no dependence in the extreme values being pooled, it is likely that the catchments are insufficiently similar for their behaviour to be relevant to the subject site!

Treatment of inter-site dependence

- It gets complicated when pooling data from N sites.
- The idea of an effective number of independent sites N_e can sometimes be useful. See reference.
- It gets messy if there are gaps in the AM series. One approach is to analyse AMs from the N nearest sites with data that year.
- It is especially tricky in arid zones where the true AM can be very small ... or even zero!

Reference: Dales, M.Y. and Reed, D.W. 1989. Regional flood and storm hazard assessment. Report 102, Institute of Hydrology, Wallingford, UK, 159pp. See http://www.ceh.ac.uk/products/publications/Regionalfloodandstormhazardassessment.html

It only takes two

Studying **pairwise dependence** is a pragmatic and powerful approach

Beverley Brook

2 urbanised catchments in SW London

Pairwise dependence in AMs

DW

Pairwise analysis is powerful

- Substantial river flood series are held for about a 1000 UK sites.
- That's 1000 x 999 /2 or almost half a million pairs of sites.
- So there is plenty of information about intersite dependence ... if we choose to study it!

۵	Analogy
K	Antecedent wetness
A⁄s	Applied statistics
1 2	Areal reduction factor
BFI	Baseflow index
В	Blending
Q	Circular diagrams
Ŷ	Clarity
c²	Climate change
Ч	Confluence
с	Conservatism
	Continuous simulation
DMF	Daily mean flow
Д	Dam safety
ď²	Data dredging
d	Dependence
d	Design
₽	Development
F	Dicey problems

[¶] [®] ^{−−} f² 4! F g G H [®] i iv J JP ℓ M ↔ m Ł A p² PC P Ω ā R I + -? ^D ⊛ m [®] s <u>−∞∞ S</u> → t ∫ ∇ T T ^U UH U <u>ω</u> V ^{w²} Z V

Duncan W Reed

	***	Society
	8	Storage
	s	Storm
4	-000	SuDS
	S	Surrogate
	→ I	<u>Tabony</u> tables
	t	Testing a model
	ſ	Transformation
	∇	Triangles
	T	Trivia
	T	Tweaks
	u	Uncertainty
	UН	Unit hydrograph
	υ	Upper limit
	ê	Urbanisation
	V	Voronoi
	w ²	Weasel words
	У	Why we model
	Ζ	Zugzwang

Search on ten characters **DWRconsult**