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Changes in temperature and precipitation (2036-2065) 
Monthly Temperature Changes [°C]                    Monthly Precipitation Changes [ %] 



Rainfall-Runoff Model: 
•  NAM: DHI’s lumped conceptual modelling system 
•  Daily simulation of discharge in the major catchments of Spain and Portugal (Ebro, 
Tajo, Duero, Guadalquivir, Guadiana, Jucar and Miño-Sil). 

Input:  
•  Precipitation: Spain02 & PT02 gridded daily precipitation product 1950-2003 
•  Temperature: E-OBS gridded daily temperature 1950-2011 
•  Potential evapotranspiration: derived from daily temperature 
•  Calibration: daily discharge timeseries (Ministry of Environment ES; Water Inst. PT) 

Climate change input timeseries: 
•  Delta change approach: calculate monthly precipitation and temperature change 
factors between current (1961-1990) and future (2036-2065) scenarios. 
•  Average of monthly change factors from 3 regional climage models:  

•  CLM (HadCM) 
•  RACMO (Echam5) 
•  REMO (Echam5) 

 

Methods: Modelling the hydrological system 

Sunyer et al., 2012. RCMs and statistical downscaling methods . 
Oudin et al., 2005. Which PET input for a lumped RR model? 



Methods: Reservoir aggregation 
More than 1000 reservoirs in the Iberian Peninsula 
All flows and volumes converted to power and energy (hydropower equation) and added. 
Irrigation schemes cause:   1. Minimum releases from upstream reservoirs 

                                   2. Flow abstractions from downstream reservoirs 
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Methods: Modelling the power system 
Company Quantity Price 

MWh €/MWh 

Bids 

Hydropower 4000 44.0 
Pumped storage 800 45.0 
Nuclear 4000 0.0 
CCGT 11000 39.5 
Thermal 5000 27.0 
Spec. Regime* A 6500 22.0 
Spec. Regime* B 3500 29.0 
Others 6000 23.0 

 Offers 

Retailer 1 15000 50 
Retailer 2 3000 46 
Retailer 3 8000 44 
Large consumer 1 5000 26 
Large consumer 2 4000 22 
Large consumer 3 3000 20 

Market clearing price 

Traded amount 
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Power demand:  
  - inelastic, estimated through daily temperature series (cooling and heating degree days) 
Power supply:  
 - Four technologies (nuclear, thermal, hydropower, renewables under special regime) 
 - Observed installed capacities (2008-2011) 
 - Marginal prices from CNE. 

Valor et al., 2001.  Daily air temperature and electricity load in Spain. 
CNE, 2008.  Propuesta de revisión de la tarifa eléctrica. 



Water value: the expected value of a marginal amount of water if it is stored for later 
use. Estimated through Stochastic Dynamic Programming (SDP) as follows: 
Given a number of power and hydropower generation units i, determine production 
levels pi such as to minimize power production costs subject to meeting the power 
demand dt and the irrigation demand wt for every period t of the planning horizon T. 

Methods: Joint optimization water-energy systems 
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F(E,Q): optimal value function 

Et:          equivalent energy storage [GWh] 

Qt:          equivalent energy inflow [GWh/week] 

c:            constant marginal costs of non-hydro producers i [€] 

p:            production levels for producers i [GWh/week] 

akl:         transition probability from inflow Qt
k to Qt+1

l 

w:           downstream irrigation water demand [m3] 

H:           hydropower production [GWh/week] 

Water to energy conversion factors: 

y:            local energy equivalent [kWh/m3] 

z:             total energy equivalent [kWh/m3] 

u:            discharge energy content [kWh/m3] 

g:             average energy production per discharge [kWh/m3] 

Indeces: 

i:              non-hydro power producer index 

t:              time index 

n:              catchment index 

k and l:    inflow scenario in week t and t+1, respectively              

SDP’s recursive equation: 

Water balance: 

Power balance: 

Min/max releases: 

Min/max storage: 

Irrigation demand: 



Results: Variations in input timeseries 
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Results: Water value tables [€/MWh] 
Very dry
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Results: Energy storage 
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Energy mix: 

    Hydropower:     11.5% 

    Nuclear:            17.8% 

    Other thermal:   40.5% 

    Special regime: 30.2% 

CO2 emissions: 72.1 million tons/year 

 

Energy mix: 

    Hydropower:      8.9%                        - 22% 

    Nuclear:            17.8% 

    Other thermal:   43.1%                       + 8.7% 

    Special regime: 30.2% 

CO2 emissions: 72.1 million tons/year  + 6.2% 

 



•  According to our results, runoff in the peninsula will decrease by 15%, 

reducing hydropower production by 22%. 

•  Summer inflow patterns will be more persistant (6 weeks v. 13 weeks) 

•  Power demand is likely to decrease in winter and to increase in summer, 

changing the trade-offs between hydropower and irrigation. 

•  If irrigation demands must be satisfied at all times, reservoirs will have to 

be managed more conservatively. This is caused by less water availability 

and more persistent dry/wet inflow patterns. 

•  Water values derived using SDP can support decision makers in reservoir 

management when facing: 

•  Conflicting economic activities (e.g. hydropower and irrigation) 

•  Uncertain future (water inflows, crop prices, etc.) 

 

Conclusions 
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