

## **Evaporation from reservoirs and** Hydropower Water Footprint Estimation

M. Marence, A. Mynet, T. Demeke

UNESCO-IHE INSTITUTE FOR WATER EDUCATION

## Water Footprint Concept

The water footprint of a product (a commodity, good or service) is the total volume of freshwater used to produce the product, summed over the various steps of the production chain. The water footprint of a product refers not only to the total volume of water used; it also refers to where and when the water is used.

(Source: Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M. and Mekonnen, M.M. (2011) The water footprint assessment manual: Setting the global standard, Earthscan, London, UK.)

#### Green water footprint:

• volume of rainwater evaporated or incorporated into product.

#### **Blue water footprint:**

 volume of surface or groundwater evaporated, incorporated into product or returned to other catchment or the sea.

Grey water footprint:

• volume of polluted water.













[Hoekstra & Chapagain, 2008]

## **Existing Studies**

- Gleick (1993) connected evaporation with hydropower plants (20 m<sup>3</sup>/GJ)
- Hoekstra (2008) 22.3 m<sup>3</sup>/GJ
- Hoekstra and Mekonen (2012) 68.0 m<sup>3</sup>/GJ

0.04

Hearth (2011) – New Zealand - < 20 m³/GJ</li>

Comparison with other electrical energy

sources [m³/GJ] \_Hoekstra (2008)

- Wind energy 0.00
- Natural gas
- Nuclear energy 0.09
- Coal 0.16
- Solar thermal 0.30
- Hydropower 22.30
- Biomass (NL) 24.16
- Biomass(BR) 61.20
- Biomass (Zimbabwe) 142.62





# Where the Water can be Lost (Consumed) by Hydropower?

- Evaporation (blue footprint)
- Seepage out of reservoir (up to 5% of reservoir volume) is it lost or just change?
- By diversion power systems in same watershed (local removal not footprint)
- Diversion of water in other watershed (based on definition a footprint)
- No water pollution (no grey footprint)
- Calculation of water footprint;

$$WFP = \frac{EW}{GE} \quad \left[ \text{m}^{3}/\text{MW} \right]$$



## Evaporation

- Dependent on reservoir area, depth, temperature and **climate**
- Three methods for evaporation definition:
  - total evaporation of reservoir
  - net evaporation (evaporation transpiration before)
  - subtracting rainfall
- Annual evaporation
  - 500-700 mm/year (continental climate, Europe)
  - < 3000 mm/year (arid areas, Aswan)</p>
  - Hoekstra (2012) average in their study 2320 mm/year



## Evaporation

Direct measuring

Penman-Monteith method (function of radiation, vapour pressure, wind...)

$$E = \frac{1}{\lambda} \left[ \left( \frac{\Delta}{\Delta + \gamma} \right) (R_n - G) + \left( \frac{\gamma}{\Delta + \gamma} \right) f(u) (e_s - e_\alpha) \right]$$

Hargreaves method (temperature, radiation)

$$ET = 0.0023(T_{mean} + 17.8)(T_{max} - T_{min})^{0.5}R_a$$

Annual reservoir evaporation volume

$$EW = \sum_{1}^{365} E * A_r(h)$$





## **HPP** Footprint

| Reservoir    | Country  | Reservoir<br>area (ha) | Installed<br>capacity<br>(MW) | Evaporation<br>(mm/year) | Water<br>footprint<br>(m³/GJ) | Remark<br>evaporation |
|--------------|----------|------------------------|-------------------------------|--------------------------|-------------------------------|-----------------------|
| Tekeze       | Ethiopia | 14,700                 | 300                           | 1,920                    | 79.9                          | Measured              |
| Finchaa-A-N  | Ethiopia | 29,330                 | 128                           | 1,650                    | 208.4                         | Measured              |
| Geba         | Ethiopia | 11,000                 | 371                           | 1,675                    | 30.5                          | Measured              |
| Arkun        | Turkey   | 553                    | 236                           | 683                      | 1.3                           | Measured              |
| Soylmez      | Turkey   | 4,534                  | 36                            | 548                      | 32.9                          | Measured              |
| Atatürk      | Turkey   | 81,700                 | 2,400                         | 1,000                    | 25.5                          | Measured              |
| Kaban        | Turkey   | 67,500                 | 1,300                         | 710                      | 22.2                          | Measured              |
|              |          |                        |                               | 1,786                    | 36.9                          | Hargreaves            |
| Gigel Gibe I | Ethiopia | 6,300                  | 184                           | 2,122                    | 43.8                          | Penman-Monteith       |
|              |          |                        |                               | 1,837                    | 38                            | Measured              |
|              |          |                        |                               | 545                      | 0.8                           | Hargreaves            |
| Kaprun       | Austria  | 329                    | 353                           | 802                      | 1.1                           | Penman-Monteith       |
|              |          |                        |                               | 600                      | 0.8                           | Measured              |
|              |          |                        |                               | 1,009                    | 15.3                          | Hargreaves            |
| Nam Ngum 2   | Lao DR   | 12,200                 | 615                           | 1,551                    | 23.5                          | Penman-Monteith       |
|              |          |                        |                               | 1,600                    | 24.2                          | Measured              |
| Akosombo     | Ghana    | 850,000                | 1,020                         | 1,500                    | 737.8                         | Measured              |
| Aswan        | Egypt    | 525,000                | 2,100                         | 3,000                    | 1,736                         | Measured max.         |

#### Influence of reservoir level oscillation:

- Kaprun, Austria 30%
- Nam Ngum II, Lao DR 21%



## Factors Influencing Water Footprint

#### **Evaporation**:

- Reservoir area (additionally flooded area)
- Climate
- Reservoir level variation

## Energy production:

- Head
  - reservoir plants mostly higher head
  - near the dam or diversion plant
- Discharge
  - reservoir volume (area and reservoir depth)
  - peak or base power plant





## Hydropower Plants

#### **Run-of-river plants:**

• no reservoir = no footprint

#### Storage plants:

- evaporation of reservoir
- dependent on actual reservoir area (reduction by 20-30%)
- flood regulation = reduction of flood evaporation
- system of reservoirs instead one large reservoir

### Small hydropower plants

- no reservoir
- concept as run-of-river plants
- portion of flow





©Verbund Austria



UNESCO-IHE

## **Multipurpose Reservoirs**

- Flood control
- Water supply (human and industrial)
- Recreational use and tourism
- Agriculture

How to calculate part of evaporation by multipurpose plants?

- deduct other uses
- as ratio of the real energy production compared with maximal possible production





## Sustainable Hydropower



Water footprint as one of factors by Hydropower Sustainability Assessment Protocol



## Conclusions

- Water, lost by **evaporation**, usually lives the hydrologic basin and therefore it is a **real loss**, but evaporation changes the local microclimate and mostly acts positively in the system.
- Calculation of the water footprint of hydropower (consumption of the water) is complicated and must take into consideration the **multipurpose** use of reservoirs and water requirements of others.
- Evaporation in the reservoir area (transpiration) before impounding could be subtracted from the total evaporation.
- Water lost by seepage remains in basin and can become available again downstream
- Water transported in another watershed should be included in water footprint
- "Objective hydropower footprint", cleaned from other multipurpose factors and related only to hydropower production should be introduced
- Objective hydropower water footprint should be an additional ecological parameter for hydropower plant characterization, but not a value for hydropower degradation

#### Instead of use, hydropower (reservoir) should conserve water!





# THANK YOU FOR YOUR ATTENTION

UNESCO-IHE Institute for Water Education www.unesco-ihe.org