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Electricity by power sources in Scandinavia
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Total electricity consumption and electricity
TWh  generation by power sources in Scandinavia
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5340 MW

Towards a green energy system 22 9%

6400 MW
26 %

Wind power production per week
in Scandinavia and in Sweden, 2010 >
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0.6 el 5580 MW
23 % '
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New quality demands

nov jan mar  maj jul sep nov e Improved management of water
resources

e Sharper tools for river runoff

Intermittent Electricity Production » o
predictions

e Improved optimization models



from an unpublished collaboration

Hydropower potential in Sweden with Géran Lindstrsm (SMHI)
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Potential versus suboptimal energy production
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* Enhanced river coordination (market)
* Increased coherence of demand and river
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Impacts of climate change
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Operation of multi-reservoir systems

weather
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Objective Function

Max. Energy output
Min. Flood risk
etc.

Storage volume

_,(t) < Volume released

-
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Restrictions

Power transmission constraints
Environmental risks
Other constraints




Operation of multi-reservoir systems

The optimization problem

v' Water balance constraints (system dynamics)

STt =SI1Tt—=1 + QI Tt —RINTt —RISATE

SUiTe=84iTt—1 +QLiTe +RLi—1Tt—rdi—1 +RIS,i—1T¢

—7di—1 —RLUTt—RIS (Tt
v’ Plant active output constraints

Storo Ludevotten
(B9 Lule Reservou)

PliminTt <PliTt <PlimaxT¢

v’ Plant generation discharge constraints
RliminTe <RliTt <RlimaxTt

v’ Reservoir water-holding capacity constraints
SiminTe <SliTe <SlimaxT¢

v Objective function

Flow routing
between reservoirs

Link between

Inflows and outflows

Riti=f(RIt.i—1)




Reservoir oeerat_ion under forecast uncertainty
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Reservoir operation under forecast uncertainty

Deterministic optimization methods

(Myopic policies or rolling horizon methods)
forecast horizon increasing

uncertainty

time

Inflows are assumed to
be deterministic

Mid- and
Stochastic optimization methods

e Assume inflows are random variables

* Account for different scenarios

* May lead to substantially different operation
policies than deterministric methods

* More complex

Long- term

Short term

sub-optimality

optimal forecast
horizon

S~ |

A

forecast horizon

cumulated inflow

4

time
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Operation of multi-reservoir systems

» Optimality equation (Bellman 1957)

— Discount factor
— Expectation

Vit (Sit)=max—Rlt (Plt (Sit,Rit )+y EVIt+1 (Sit+1)|Sit})

Value function
Storage ——

Utility function ———

» The computational requirements increase
exponentially with the number of reservoirs

(“curse of dimensionality”)

» Possible solutions:

O Approximate dynamic programming (ADP)

and reinforcement learning techniques

— Controllable releases




Approximate dynamic programming (ADP) using function
approximators

» The value function is expressed as a sum of basis functions

» The optimality equation is solved forward in time starting from an initial estimate of the
value function

» The coefficients of the value function approximation are determined iteratively via an
offline learning process considering a number of inflows scenarios

» Once the value function has been determined, the optimal operating policy is obtained
directly from the optimality equation:

Vit (Sit)=max—Rlt (Plt (Sit,Rit)+y Vie+1 (Sit+1))



Generation of stochastic inflow series

» Periodic Autoregressive Model — Standard normal random variable

OQLETN =ad0,t +all,t Qlt—1TN +al2,¢ {le | =1,2,..., 52

Normalized inflow Synthetic inflow scenarios
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Optimization under uncertainty
An ADP algorithm for stochastic multi-reservoir operation
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Combined short- and mid-term planning

Vi¢Tshort—term (.ﬂz‘i) Vitlyear (Sit)

A

storage

v

<« Short-term _,l  mid-term planning
horizon (annual cycling)

Synthetic inflows are generated
assuming the variance of the
forecast error increases linearly
with time



Case study: The Dal river (Dalilven) °STER°ALAE"1
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Case study: The Dal river (Dalalven)

Potential production 8.3 TWh/year

Actual production (measured) 4.2 TWh/year
Actual production assuming 100% efficiency 6.8 TWh/year
Stochastic optimization model assuming 100% efficiency 7.7 TWh/year
Optimization with perfect information assuming 100% efficiency 8.1 TWh/year
3.5 - potential production
P
ower ——— stochastic optimization model (100% efficiency)
[GW] 30 4 ———— actual production for 100% efficiency
actual production (measured)
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Conclusions

» There is potential for significanlty increasing the energy production by
managing water resources more efficiently

> The efficiency of water management policies is affected by uncertainty and
forecast errors

» A new stochastic optimization model for multireservoir systems has been
developed
O The curse of dimensionality is solved using an approximate dynamic approach
O The method combines mid- and short-term planning

» Further model developments will consider:
O Different variants of the algorithm

O Comparison with other deterministic and stochastic optimization models for small-
scale problems

U Incorporation of a flow routing model






